1. 무료 LLM, Ollama 설치

위 링크의 2. 무료 AI 모델 설치를 참고해서 먼저 ollama 를 설치한다.

image 41

CMD 를 켜서 위와 같은 화면을 보았다면 성공. 꼭 모델을 위에 사진처럼 다운 받을 필요는 없다.

2. Ollama 모델 python 으로 실행시키기

anaconda 가상환경 혹은 python 환경에서
pip install langchain
pip install langchain_community

from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain_ollama import OllamaLLM
from langchain_core.output_parsers import StrOutputParser
import os
from dotenv import load_dotenv
import json

# Load environment variables
load_dotenv()

input_data="hello"
print(input_data)

# Define the system message template to instruct the model clearly
system_template = """
You are an expert in Robotics. Based on the provided paper. I hope you’re doing well. Could you please send me a summary of the review for "[Paper Title]"
"""

# Create the system and user message templates
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
user_message_prompt = HumanMessagePromptTemplate.from_template("{input}")

# Define the chat prompt template with system and user messages
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, user_message_prompt])

# Initialize the LLM model
llm = OllamaLLM(model="deepseek-r1:8b")

# Create the chain with prompt and output parser
chain = chat_prompt | llm | StrOutputParser()

# Execute the chain with the input data
result = chain.invoke({"input": input_data})

# Print the formatted result
print(result)
image 42

위의 코드를 실행시켰을 때 결과이다.

3. PDF 입력

링크

먼저 위 링크와 같이 embedding 모델을 ollama 에서 추가로 설치하여야 한다.

image 43

이후 본인의 python 환경에서

pip install pypdf
pip install docarray

그리고 아래와 같이 코딩

from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain_ollama import OllamaLLM
from langchain_core.output_parsers import StrOutputParser
import os
from dotenv import load_dotenv
import json
from langchain_community.llms import Ollama
from langchain_community.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain_community.embeddings import OllamaEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from sys import argv

# 1. Create the model
llm = OllamaLLM(model="deepseek-r1:8b", model_kwargs={'device':'cuda'})
embeddings = OllamaEmbeddings(model='bge-m3:latest', model_kwargs={'device':'cuda'})
# 2. Load the PDF file and create a retriever to be used for providing context
pdf_path=r"C:\Users\PC\Zotero\storage\E5KMYDJK\Gwon et al. - 2024 - Continuous Intention Prediction of Lifting Motions.pdf"
pdf_path_input = pdf_path.replace("\\", "/")

loader = PyPDFLoader(pdf_path_input)
pages = loader.load_and_split()
store = DocArrayInMemorySearch.from_documents(pages, embedding=embeddings)
retriever = store.as_retriever()

# 3. Create the prompt template
template = """
Answer the question based only on the context provided.

Context: {context}

Question: {question}
"""

prompt = PromptTemplate.from_template(template)

def format_docs(docs):
  return "\n\n".join(doc.page_content for doc in docs)

# 4. Build the chain of operations
chain = (
  {
    'context': retriever | format_docs,
    'question': RunnablePassthrough(),
  }
  | prompt
  | llm
  | StrOutputParser()
)

# 5. Start asking questions and getting answers in a loop
while True:
  question = input('What do you want to learn from the document?\n')
  print()
  print(chain.invoke({'question': question}))
  print()

이제 실행하면 첨부한 pdf 를 기반으로 질문을 통해 원하는 답변을 얻을 수 있다.

image 44

다만 영어로 입력하거나 영어로 답변을 받아야 한다.

자동 한글 번역

LG ai 팀에서 만든 아래 모델을 ollama 에 설치한다.

링크

# 1. Create the model
llm = OllamaLLM(model="deepseek-r1:8b", model_kwargs={'device':'cuda'})
llm2 = OllamaLLM(model="exaone3.5:2.4b", model_kwargs={'device':'cuda'})
embeddings = OllamaEmbeddings(model='bge-m3:latest', model_kwargs={'device':'cuda'})

위와 같이 llm2 를 추가로 선언하고 main 코드를 아래와 같이 수정한다

# 2. Load the PDF file and create a retriever to be used for providing context
pdf_path=r"C:\Users\PC\Zotero\storage\E5KMYDJK\Gwon et al. - 2024 - Continuous Intention Prediction of Lifting Motions.pdf"
pdf_path_input = pdf_path.replace("\\", "/")

loader = PyPDFLoader(pdf_path_input)
pages = loader.load_and_split()
store = DocArrayInMemorySearch.from_documents(pages, embedding=embeddings)
retriever = store.as_retriever()

# 3. Create the prompt template
template = """
Answer the question based only on the context provided.

Context: {context}

Question: {question}
"""

prompt = PromptTemplate.from_template(template)

def format_docs(docs):
  return "\n\n".join(doc.page_content for doc in docs)

# 4. Build the chain of operations
chain = (
  {
    'context': retriever | format_docs,
    'question': RunnablePassthrough(),
  }
  | prompt
  | llm
  | StrOutputParser()
)

def translate_to_korean(text):
    prompt = f"Translate the following text to Korean: {text}"
    response = llm2(prompt)
    return response


# 5. Start asking questions and getting answers in a loop
while True:
  question = input('What do you want to learn from the document?\n')
  print()
  input_text= chain.invoke({'question': question})
  print(input_text)
  print()
  translated_text = translate_to_korean(input_text)
  print(translated_text)
  
image 45

사진과 같이 이제 자동으로 한글로 번역된 결과를 확인할 수 있다.


0 Comments

Leave a Reply