강의

Introduction to MPC (Lasse Peters)

Autonomous Driving Scenario

Indroduction: The control task

image 12

given
reference plan : —
state estimate : 나의 속도, 위치, 다른 차의 속도
find
which control inputs achieve the plan : steering angle, pedal, …

remind: reactive Control

image 13


Longitudinal
control via PID
Lateral
control via Stanley

image 14

Limitations of Reactive Control

  • Non-trivial for more complex systems
  • control gains must be tuned manually
  • separation into longitudinal and lateral controllers ignores coupling
  • no handling of constraints such as obstacles
  • ignores future decisions

Optimal Control : Model

Model of the system dynamics:
predicts the evolution of the state for a given sequence of inputs.
x_t+1 = f(x_t, u_t)

Control inputs (핸들 각도) -> dynamics -> state trajectory (자동차 경로)

Model Example : Discrete 2D Bicycle

image 15

Optimal Control: Objective

  • Objective
    Assigns a cost to the trajectory
  • Example: deviation from a reference
image 16
image 17

Optimal Control: Constraints

image 18


차량이 피해야 할 방애물을 수식화 하거나

image 19


차량의 최대, 최소 가속도를 수식화 할 수 있다.

Control as Optimization Problem

In summary

image 20

Model Predictive Control (MPC)

Receding horizon control

  • Start from the current state
  • Find controls for a limited preview into the future
  • Apply only the first input, then re-plan
image 21

MPC Design: Prediction Model Trade-off in choice of model family

  • Trade-off in choice of model family: Model accuracy vs. complexity
  • Data-driven approach
    • Collectdata of the real system behavior
    • Optimize the parameters of the model to match the behavior of the real system
image 22

Limitation: Interaction

MPC only models other agents indirectly via the dynamics
– other agents treated as dynamic obstacles with constant velocity

Challenge: Other agents also plan -> Decisions are coupled

Outlook: Dynamic Games

Ingredients of a dynamic game

  • joint dynamics
    이전 time 의 모든 사람의 입력이 들어가서 다음 x 예측
  • Individual costs
    입력으로 들어가는건 자신의 상태, 자신의 입력, 다른 사람들의 입력(not i, 세번째 항)
  • Solution: Nash Equilibrium
  • No player can unilaterally improve

어떤 사람도 자기 혼자서 (다른 사람은 가만히 두고) 자신의 cost 를 더 낮출 수 없다.

여러 명의 사람이 각자 자신의 목적함수를 최적화하면서 동시에 움직이고, 아무도 자기 혼자 행동을 바꿔서 더 이득을 볼 수 없는 상태에 도달하면 nash equilibrium

image 23
image 24

Dynamic Game Example: Tag

2D point-mass dynamics
Objectives P1: minimize distance to P2, P2: Maximize distance to P1

image 25

Numerical Methods for Model Predictive Control


0 Comments

Leave a Reply